Word Clouds
Preparation for Word Clouds
<-table(rp_single_author_all_oa$AU)
corr_table_all_oa<- corr_table_all_oa%>%
corr_table_all_oa_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(rp_single_author_green$AU)
corr_table_green<- corr_table_green%>%
corr_table_green_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(rp_single_author_green_final$AU)
corr_table_green_final<- corr_table_green_final%>%
corr_table_green_final_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(rp_single_author_green_accepted$AU)
corr_table_green_accepted<- corr_table_green_accepted%>%
corr_table_green_accepted_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(rp_single_author_not_green$AU)
corr_table_not_green<- corr_table_not_green%>%
corr_table_not_green_sorted as.data.frame() %>%
arrange(desc(Freq))
Separate tables for Open Access publications
<-table(scopus_wos_all_oa$SO)
SO_table_all_oa<- SO_table_all_oa%>%
SO_table_all_oa_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(scopus_wos_green$SO)
SO_table_green<- SO_table_green%>%
SO_table_green_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(scopus_wos_green_final$SO)
SO_table_green_final<- SO_table_green_final%>%
SO_table_green_final_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(scopus_wos_green_accepted$SO)
SO_table_green_accepted<- SO_table_green_accepted%>%
SO_table_green_accepted_sorted as.data.frame() %>%
arrange(desc(Freq))
<-table(scopus_wos_not_green$SO)
SO_table_not_green<- SO_table_not_green%>%
SO_table_not_green_sorted as.data.frame() %>%
arrange(desc(Freq))
Publications
Yarrr package seems to be best for vibrant and differing colours!
All Open Access
set.seed(1404)
<- as.data.frame(SO_table_all_oa_sorted)
DF_SO_table_all_oa_sorted <- wordcloud(words = DF_SO_table_all_oa_sorted$Var1, freq = DF_SO_table_all_oa_sorted$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.05), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wordcloud_all_oa_publications
##To fit long publication names had to make the words pretty small
Green
<- as.data.frame(SO_table_green_sorted)
DF_SO_table_green_sorted <- wordcloud(words = DF_SO_table_green_sorted$Var1, freq = DF_SO_table_green_sorted$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.3,0.05), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_green_publications
##To fit long publication names had to make the words pretty small
Green Final
<- as.data.frame(SO_table_green_final_sorted)
DF_SO_table_green_final_sorted <- wordcloud(words = DF_SO_table_green_final_sorted$Var1, freq = DF_SO_table_green_final_sorted$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(0.9,0.05), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_green_final_publications
##To fit long publication names had to make the words pretty small
Green Accepted
<- as.data.frame(SO_table_green_accepted_sorted)
DF_SO_table_green_accepted_sorted <- wordcloud(words = DF_SO_table_green_accepted_sorted$Var1, freq = DF_SO_table_green_accepted_sorted$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(0.8,0.05), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_green_accepted_publications
##To fit long publication names had to make the words pretty small
Not Green
<- as.data.frame(SO_table_not_green_sorted)
DF_SO_table_not_green_sorted <- wordcloud(words = DF_SO_table_not_green_sorted$Var1, freq = DF_SO_table_not_green_sorted$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(.25,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_not_green_publications
##To fit long publication names had to make the words pretty small
Keywords
All Open Access
<- scopus_wos_all_oa %>% separate_rows(DE, sep = "; ") %>% select(DE)
all_oa_keywords<- all_oa_keywords %>%
all_oa_keywordscount(DE)
<- na.omit(all_oa_keywords)
all_oa_keywordscolnames(all_oa_keywords)[2]<- "Freq"
<- wordcloud(words = all_oa_keywords$DE, freq = all_oa_keywords$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_just_all_oa_keywords
Green
<- scopus_wos_green %>% separate_rows(DE, sep = "; ") %>% select(DE)
green_keywords<- green_keywords %>%
green_keywordscount(DE)
<- na.omit(green_keywords)
green_keywordscolnames(green_keywords)[2]<- "Freq"
<- wordcloud(words = green_keywords$DE, freq = green_keywords$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_just_green_keywords
Green Final
<- scopus_wos_green_final %>% separate_rows(DE, sep = "; ") %>% select(DE)
green_final_keywords<- green_final_keywords %>%
green_final_keywordscount(DE)
<- na.omit(green_final_keywords)
green_final_keywordscolnames(green_final_keywords)[2]<- "Freq"
<- wordcloud(words = green_final_keywords$DE, freq = green_final_keywords$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_just_green_final_keywords
Green Accepted
<- scopus_wos_green_accepted %>% separate_rows(DE, sep = "; ") %>% select(DE)
green_accepted_keywords<- green_accepted_keywords %>%
green_accepted_keywordscount(DE)
<- na.omit(green_accepted_keywords)
green_accepted_keywordscolnames(green_accepted_keywords)[2]<- "Freq"
<- wordcloud(words = green_accepted_keywords$DE, freq = green_accepted_keywords$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_just_green_accepted_keywords
Not Green
<- scopus_wos_not_green %>% separate_rows(DE, sep = "; ") %>% select(DE)
not_green_keywords<- not_green_keywords %>%
not_green_keywordscount(DE)
<- na.omit(not_green_keywords)
not_green_keywordscolnames(not_green_keywords)[2]<- "Freq"
<- wordcloud(words = not_green_keywords$DE, freq = not_green_keywords$Freq, min.freq = 1, max.words=10, random.order=FALSE, scale=c(1.5,0.25), rot.per=0.35, colors = piratepal("xmen")) ##Just the TOP 10 wourdcloud_just_not_green_keywords